Diffraction-limited Polarimetry from the Infrared Imaging Magnetograph at Big Bear Solar Observatory

نویسندگان

  • Wenda Cao
  • Ju Jing
  • Jun Ma
  • Yan Xu
  • Haimin Wang
  • Philip R. Goode
چکیده

The Infrared Imaging Magnetograph (IRIM) system developed by Big Bear Solar Observatory (BBSO) has been put into preliminary operation. It is one of the first imaging spectropolarimeters working at 1565 nm and is used for the observations of the Sun at its opacity minimum, exposing the deepest photospheric layers. The tandem system, which includes a 4.2 nm interference filter, a unique 0.25 nm birefringent Lyot filter, and a Fabry-Pérot etalon, is capable of providing a bandpass as low as 0.01 nm in a telecentric configuration. A fixed quarter-wave plate and a nematic liquid crystal variable retarder are employed for analyzing the circular polarization of the Zeeman components. The longitudinal magnetic field is measured for the highly Zeemansensitive Fe i line at 1564.85 nm (Landé factor ). The polarimetric data were taken through a field of view g p 3 of ∼ and were recorded by a pixel, 14 bit HgCdTe CMOS focal plane array camera. ′′ ′′ 145 # 145 1024 # 1024 Benefiting from the correlation tracking system and a newly developed adaptive optics system, the first imaging polarimetric observations at 1565 nm were made at the diffraction limit on 2005 July 1 using BBSO’s 65 cm telescope. After comparing the magnetograms from IRIM with those taken by the Michelson Doppler Imager on board SOHO, it was found that all the magnetic features matched very well in both sets of magnetograms. In addition, Stokes V profiles obtained from the Fabry-Pérot etalon scan data provide access to both the true magnetic field strength and the filling factor of the small-scale magnetic flux elements. In this paper, we present the design, fabrication, and calibration of IRIM, as well as the results of the first scientific observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NIRIS - the Second Generation Near-Infrared Imaging Spectro-polarimeter for the 1.6 Meter New Solar Telescope

The largest aperture solar telescope, the 1.6 m New Solar Telescope (NST) has been installed at the Big Bear Solar Observatory (BBSO). To take full advantage of the NST’s greatest potential, we are upgrading the routinely operational InfraRed Imaging Magnetograph (IRIM) to its second generation, the NIRIS (Near-InfraRed Imaging Spectropolarimeter). NIRIS will offer unprecedented high resolution...

متن کامل

First Light of the Near-infrared Narrow-band Tunable Birefringent Filter at Big Bear Solar Observatory

We discuss a near-infrared (NIR) narrow-band tunable birefringent filter system newly developed by the Big Bear Solar Observatory (BBSO). This is one of the first narrow-bandpass NIR filter systems working at 1.56 μm which is used for the observation of the deepest solar photosphere. Four stages of calcite were used to obtain a bandpass of 2.5 Å along with a free spectral range (FSR) of 40 Å. S...

متن کامل

Software and Hardware Improvements for Digital Solar

SOFTWARE AND HARDWARE IMPROVEMENTS FOR DIGITAL SOLAR MAGNETOGRAPH SYSTEM by Shu Yang Digital solar imaging systems have been widely used in solar observations. Their high resolution, high rate of image acquisition and convenience for off-line image processing have provided significant improvements to solar physics research. In this project, two digital magnetograph systems established at Big Be...

متن کامل

Phase III of USO Solar Vector Magnetograph

The Solar Vector Magnetograph (SVM) is a modern imaging spectropolarimeter installed at Udaipur Solar Observatory (USO). Earlier phases saw the development of the instrument using off-the-shelf components with in-house software development. Subsequently, improvements were done in the opto-mechanical design of the sub-systems and the telescope tracking system. The third phase of the instrument d...

متن کامل

C . Hines ( Space Science Institute ) & Glenn Schneider ( Steward Observatory )

We present results from our recent program (GO 9768: Hines PI ) to evaluate, calibrate, and enable for commissioning, high-contrast near-IR imaging polarimetry via coronagraphy with the Near Infrared Camera & Multi-Object Spectrometer (NICMOS) onboard the Hubble Space Telescope (HST). We find that the NICMOS Camera 2 polarizing filters can be used efficiently and effectively in combination with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006